213,956 research outputs found

    Allometric Scaling of Countries

    Full text link
    As huge complex systems consisting of geographic regions, natural resources, people and economic entities, countries follow the allometric scaling law which is ubiquitous in ecological, urban systems. We systematically investigated the allometric scaling relationships between a large number of macroscopic properties and geographic (area), demographic (population) and economic (GDP, gross domestic production) sizes of countries respectively. We found that most of the economic, trade, energy consumption, communication related properties have significant super-linear (the exponent is larger than 1) or nearly linear allometric scaling relations with GDP. Meanwhile, the geographic (arable area, natural resources, etc.), demographic(labor force, military age population, etc.) and transportation-related properties (road length, airports) have significant and sub-linear (the exponent is smaller than 1) allometric scaling relations with area. Several differences of power law relations with respect to population between countries and cities were pointed out. Firstly, population increases sub-linearly with area in countries. Secondly, GDP increases linearly in countries but not super-linearly as in cities. Finally, electricity or oil consumptions per capita increases with population faster than cities.Comment: 23 pages, 3 figure

    Numerical Methods for Quasicrystals

    Full text link
    Quasicrystals are one kind of space-filling structures. The traditional crystalline approximant method utilizes periodic structures to approximate quasicrystals. The errors of this approach come from two parts: the numerical discretization, and the approximate error of Simultaneous Diophantine Approximation which also determines the size of the domain necessary for accurate solution. As the approximate error decreases, the computational complexity grows rapidly, and moreover, the approximate error always exits unless the computational region is the full space. In this work we focus on the development of numerical method to compute quasicrystals with high accuracy. With the help of higher-dimensional reciprocal space, a new projection method is developed to compute quasicrystals. The approach enables us to calculate quasicrystals rather than crystalline approximants. Compared with the crystalline approximant method, the projection method overcomes the restrictions of the Simultaneous Diophantine Approximation, and can also use periodic boundary conditions conveniently. Meanwhile, the proposed method efficiently reduces the computational complexity through implementing in a unit cell and using pseudospectral method. For illustrative purpose we work with the Lifshitz-Petrich model, though our present algorithm will apply to more general systems including quasicrystals. We find that the projection method can maintain the rotational symmetry accurately. More significantly, the algorithm can calculate the free energy density to high precision.Comment: 27 pages, 8 figures, 6 table
    • …
    corecore